Solve the following problems. Use the RDW process.

1. There are 19 identical socks. How many pairs of socks are there? Will there be any socks without a match? If so, how many?

 ![Sock Image]

 9 pairs with 1 sock left without a match.

 The quotient is 9 and the remainder is 1.

2. If it takes 8 inches of ribbon to make a bow, how many bows can be made from 3 feet of ribbon (1 foot = 12 inches)? Will any ribbon be left over? If so, how much?

 ![Ribbon Image]

 4 bows can be made with 4 inches left over.

 The quotient is 4 and the remainder is 4.

3. The library has 27 chairs and 5 tables. If the same number of chairs is placed at each table, how many chairs can be placed at each table? Will there be any extra chairs? If so, how many?

 ![Chairs Image]

 5 chairs can be placed at every table. Two chairs are extra.

 The quotient is 5 and the remainder is 2.
4. The baker has 42 kilograms of flour. She uses 8 kilograms each day. After how many days will she need to buy more flour?

\[
\begin{align*}
42 \div 8 &= 5 \text{ remainder of } 2 \\
&= 8, 16, 24, 32, 40, 48
\end{align*}
\]

The quotient is 5 and the remainder is 2.
She will need to buy flour after 5 days.

5. Caleb has 76 apples. He wants to bake as many pies as he can. If it takes 8 apples to make each pie, how many apples will he use? How many apples will not be used?

\[
\begin{align*}
76 \div 8 &= 9 \text{ remainder of } 4 \\
&= 8, 16, 24, 32, 40, 48, 56, 64, 72, 80
\end{align*}
\]

The quotient is 9 and the remainder is 4.
Caleb will use 72 apples 4 apples will not be used.

*Note that this problem asks students for the apples used, not the number of pies made.

6. Forty-five people are going to the beach. Seven people can ride in each van. How many vans will be required to get everyone to the beach?

\[
\begin{align*}
45 \div 7 &= 6 \text{ remainder of } 3 \\
7, 14, 21, 28, 35, 42, 49
\end{align*}
\]

7 vans will be needed to get everyone to the beach.

*Note this asks them to interpret the remainder.
Solve the following problem. Use the RDW process.

1. Fifty-three students are going on a field trip to the zoo. Before the trip, a teacher forms groups of students and assigns a chaperone to each group. As much as she can, the teacher divides the students into groups of 6. How many groups of students will there be? Will each group have 6 students? How many total chaperones are needed?

There will be 9 groups of students.
No, 8 groups will have 6 students and 1 group will have 5 students.
The teacher will need 9 chaperones.

The quotient is 8 and the remainder is 5.

Option: Use this problem with 23 students instead of 53.
Solve the following problems. Use the RDW process.

1. Linda makes booklets using 2 sheets of paper. She has 17 sheets of paper. How many of these booklets can she make? Will she have any extra paper? How many sheets?

 Linda can make 8 booklets
 She will have 1 extra sheet of paper.
 The quotient is 8 and the remainder is 1

2. Linda uses thread to sew the booklets together. She cuts 6 inches of thread for each booklet. How many booklets can she stitch with 50 inches of thread? Will she have any unused thread after stitching up the booklets? If so, how much?

 \[50 \div 6 = 8 \text{ remainder } 2 \]
 The quotient and the remainder is 2
 Linda can stitch 8 booklets with 2 inches of unused thread.

3. Ms. Rochelle wants to put her 29 students into groups of 6. How many groups of 6 can she make? If she puts any remaining students in a smaller group, how many students will be in that group?

 \[29 \div 6 = 4 \text{ remainder } 5 \]
 4 groups of 6 with 5 remaining
4. A trainer gives his horse, Caballo, 7 gallons of water every day from a 57-gallon container. How many days will Caballo receive his full portion of water from the container? On which number day will the trainer need to refill the container of water?

5. Meliza has 43 toy soldiers. She lines them up in rows of 5 to fight imaginary zombies. How many of these rows can she make? After making as many rows of 5 as she can, she puts the remaining soldiers in the last row. How many soldiers are in that row?

6. Seventy-eight students are separated into groups of 8 for a field trip. How many groups are there? The remaining students form a smaller group of how many students?
<table>
<thead>
<tr>
<th>Show division using an array.</th>
<th>Show division using an area model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 18 ÷ 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotient = 3</td>
<td>Can you show 18 ÷ 6 with one rectangle? Yes</td>
</tr>
<tr>
<td>Remainder = 0</td>
<td></td>
</tr>
<tr>
<td>2. 19 ÷ 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotient = 3</td>
<td>Can you show 19 ÷ 6 with one rectangle? No</td>
</tr>
<tr>
<td>Remainder = 1</td>
<td>Explain how you showed the remainder:</td>
</tr>
</tbody>
</table>
Solve using an array and an area model. The first one is done for you.

Example: 25 ÷ 2

a.

Quotient = 12 Remainder = 1

3. 29 ÷ 3

a.

Quotient = 9 Remainder = 2

4. 22 ÷ 5

a.

Quotient = 4 Remainder = 2

5. 43 ÷ 4

a.

Quotient = 10 Remainder = 3

6. 59 ÷ 7

a.

Quotient = 8 Remainder = 3
Solve using an array and area model.

1. \(27 \div 5\)
 a.
 b.
 Quotient = 5
 Remainder = 2

2. \(32 \div 6\)
 a.
 Quotient = 5
 Remainder = 2
 b.

 5
 6
<table>
<thead>
<tr>
<th>Show division using an array.</th>
<th>Show division using an area model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 24 ÷ 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotient = 6</td>
<td>Can you show 24 ÷ 4 with one rectangle? Yes</td>
</tr>
<tr>
<td>Remainder = 0</td>
<td></td>
</tr>
</tbody>
</table>

2. 25 ÷ 4	
![Array](image3)	![Area Model](image4)
Quotient = 6	Can you show 25 ÷ 4 with one rectangle? **No**
Remainder = 1	Explain how you showed the remainder:
Solve using an array and area model. The first one is done for you.

Example: \(25 \div 3 \)

\[
\begin{array}{l}
a. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\quad b. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\end{array}
\]

Quotient = 8 Remainder = 1

3. \(44 \div 7 \)

\[
\begin{array}{l}
a. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\quad b. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\end{array}
\]

Quotient = 6 Remainder = 2

4. \(34 \div 6 \)

\[
\begin{array}{l}
a. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\quad b. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\end{array}
\]

Quotient = 5 Remainder = 4

5. \(37 \div 6 \)

\[
\begin{array}{l}
a. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\quad b. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\end{array}
\]

Quotient = 6 Remainder = 1

6. \(46 \div 8 \)

\[
\begin{array}{l}
a. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\quad b. \quad \begin{array}{c}
\square \square \square \square \square \square \square \\
\end{array}
\end{array}
\]

Quotient = 6 Remainder = 0
Show the division using disks. Relate your work on the place value chart to long division. Check your quotient and remainder by using multiplication and addition.

1. \(7 \div 2 \)

 \[
 \begin{array}{c|c}

 \hline
 \text{Tens} & \text{Ones} \\
 \hline
 0 & 0 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c}

 \hline
 \text{Ones} & \\
 \hline
 7 & 0 \\
 \hline
 \end{array}
 \]

 quotient = 3

 remainder = 1

 Check Your Work

 \[
 \begin{array}{c|c}

 \hline
 \text{Tens} & \text{Ones} \\
 \hline
 3 & 2 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c}

 \hline
 \text{Ones} & \\
 \hline
 2 & 0 \\
 \hline
 \end{array}
 \]

 \[
 \frac{3 \times 2}{2 \times 6} = 7
 \]

2. \(27 \div 2 \)

 \[
 \begin{array}{c|c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 1 & 0 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 2 & 0 \\
 \hline
 \end{array}
 \]

 quotient = 13

 remainder = 1

 Check Your Work

 \[
 \begin{array}{c|c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 1 & 3 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 6 & 1 \\
 \hline
 \end{array}
 \]

 \[
 \frac{13 \times 2}{2 \times 6} = 27
 \]

3. \(8 \div 3 \)

 \[
 \begin{array}{c|c|c|c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 0 & 0 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 2 & 0 \\
 \hline
 \end{array}
 \]

 quotient = 2

 remainder = 2

 Check Your Work

 \[
 \begin{array}{c|c|c|c|c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 2 & 0 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c|c|c|c}

 \hline
 \text{Tens} & \text{Ones} & \\
 \hline
 6 & 2 \\
 \hline
 \end{array}
 \]

 \[
 \frac{2 \times 3}{6 \times 2} = 8
 \]
4. \(38 \div 3 \)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\circ & \circ \\
\circ & \circ \\
\circ & \circ \\
\end{array}
\]

\[
3 \overline{\begin{array}{c|c}
3 & 8 \\
-3 & -6 \\
\hline
& 2 \\
\end{array}}
\]

quotient = 12

remainder = 2

Check Your Work

\[
\begin{align*}
12 & \quad 36 \\
\times 3 & \quad +2 \\
\hline
36 & \quad 38
\end{align*}
\]

5. \(6 \div 4 \)

\[
\begin{array}{c|c}
\text{Ones} \\
\hline
\circ & \circ \\
\circ & \circ \\
\circ & \circ \\
\circ & \circ \\
\circ & \\
\end{array}
\]

\[
4 \overline{\begin{array}{c|c}
1 & 6 \\
-4 & -2 \\
\hline
& \\
\end{array}}
\]

quotient = 1

remainder = 2

Check Your Work

\[
\begin{align*}
1 & \quad 4 \\
\times 4 & \quad = 6
\end{align*}
\]

6. \(86 \div 4 \)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\circ & \circ \\
\end{array}
\]

\[
4 \overline{\begin{array}{c|c}
2 & 1 \\
-8 & -6 \\
\hline
0 & 2 \\
\end{array}}
\]

quotient = 21

remainder = 2

Check Your Work

\[
\begin{align*}
21 & \quad 84 \\
\times 4 & \quad +2 \\
\hline
84 & \quad 86
\end{align*}
\]
Show the division using disks. Relate your work on the place value chart to long division. Check your quotient and remainder by using multiplication and addition.

1. \(5 \div 3\)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{quotient} & \text{remainder} \\
\hline
\text{3} & \text{2} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{quotient} & \text{remainder} \\
\hline
\text{21} & \text{2} \\
\end{array}
\]

2. \(65 \div 3\)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{quotient} & \text{remainder} \\
\hline
\text{21} & \text{2} \\
\end{array}
\]

Check Your Work

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{quotient} & \text{remainder} \\
\hline
\text{21} & \text{2} \\
\end{array}
\]

Check Your Work

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\text{\)} & \text{\)} \\
\end{array}
\]
Show the division using disks. Relate your work on the place value chart to long division. Check your quotient and remainder by using multiplication and addition.

1. $7 \div 3$

 \[
 \begin{array}{c}
 \text{Ones} \\
 \hline
 7 \\
 -6 \\
 \hline
 1
 \end{array}
 \]

 \[
 \text{quotient} = 2 \\
 \text{remainder} = 1
 \]

 \[
 \begin{array}{c}
 \text{Check Your Work} \\
 \hline
 2 \\
 \text{x} 3 \\
 \hline
 6 \\
 + 1 \\
 \hline
 7
 \end{array}
 \]

2. $67 \div 3$

 \[
 \begin{array}{c|c}
 \text{Tens} & \text{Ones} \\
 \hline
 6 & 7 \\
 -6 & 1 \\
 \hline
 1
 \end{array}
 \]

 \[
 \text{quotient} = 22 \\
 \text{remainder} = 1
 \]

 \[
 \begin{array}{c}
 \text{Check Your Work} \\
 \hline
 22 \\
 \text{y} 3 \\
 \hline
 66 \\
 + 1 \\
 \hline
 67
 \end{array}
 \]

3. $5 \div 2$

 \[
 \begin{array}{c}
 \text{Ones} \\
 \hline
 5 \\
 -4 \\
 \hline
 1
 \end{array}
 \]

 \[
 \text{quotient} = 2 \\
 \text{remainder} = 1
 \]

 \[
 \begin{array}{c}
 \text{Check Your Work} \\
 \hline
 2 \\
 \text{x} 2 \\
 \hline
 4
 \end{array}
 \]
4. \(85 \div 2\)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
8 & 5 \\
\hline
4 & 2 \\
\hline
\end{array}
\]

quotient = 42
remainder = 1

Check Your Work

\[
\begin{array}{c}
42 \\
\times 2 \\
\hline
84 \\
\hline
+1 \\
\hline
85 \\
\end{array}
\]

5. \(5 \div 4\)

\[
\begin{array}{c|c}
\text{Ones} \\
\hline
8 & 8 & 8 & 8 \\
\hline
4 & 1 & 1 & 1 \\
\hline
\end{array}
\]

quotient = 1
remainder = 1

Check Your Work

\[
\begin{array}{c}
\cdot 1 \\
\div 4 \\
\hline
1 \\
\hline
+1 \\
\hline
5 \\
\end{array}
\]

6. \(85 \div 4\)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
8 & 5 \\
\hline
2 & 1 \\
\hline
\end{array}
\]

quotient = 21
remainder = 1

Check Your Work

\[
\begin{array}{c}
21 \\
\div 4 \\
\hline
24 \\
\hline
+1 \\
\hline
85 \\
\end{array}
\]

Lesson 16: Understand and solve two-digit dividend division problems with a remainder in the ones place by using number disks.

Date: 8/28/13

\[\text{engage} \text{ny} \ 3.E.38\]
Show the division using disks. Relate your model to long division. Check your quotient and remainder by using multiplication and addition.

1. $5 ÷ 2$

 \[
 \begin{array}{c|c}
 \text{Ones} & 2 \frac{1}{4} \\
 \hline
 5 & 2 \left\lfloor \frac{5}{2} \right\rfloor \quad \text{quotient} = 2 \quad \text{remainder} = 1 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{Check Your Work} & 2 \\
 \hline
 x \frac{2}{4} & \frac{2}{4} \\
 \hline
 4 + 1 & 5 \checkmark
 \end{array}
 \]

2. $50 ÷ 2$

 \[
 \begin{array}{c|c|c}
 \text{Tens} & \text{Ones} & 2 \frac{1}{4} \\
 \hline
 5 & 0 & 25 \left\lfloor \frac{50}{2} \right\rfloor \quad \text{quotient} = \frac{25}{10} \quad \text{remainder} = 0 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{Check Your Work} & 25 \\
 \hline
 x \frac{2}{5} & \frac{25}{5} \checkmark
 \end{array}
 \]

3. $7 ÷ 3$

 \[
 \begin{array}{c|c}
 \text{Ones} & 2 \frac{1}{3} \\
 \hline
 7 & 3 \left\lfloor \frac{7}{3} \right\rfloor \quad \text{quotient} = \frac{2}{1} \quad \text{remainder} = \frac{1}{3} \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{Check Your Work} & 2 \frac{1}{3} \\
 \hline
 x \frac{2}{3} & \frac{6}{7} \checkmark
 \end{array}
 \]
4. \(75 \div 3\)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
9 & 5 \\
5 & 0 \\
\end{array}
\]

\(\begin{array}{c}
3 & 25 \\
\hline
7 & 5 \\
6 & 15 \\
\hline
15 & 0 \\
\end{array}\)

quotient = 25
remainder = 0

Check Your Work
\[
\frac{75}{3} = 25 \quad \text{remainder} \quad 0
\]

5. \(9 \div 4\)

\[
\begin{array}{c|c}
\text{Ones} & \text{ } \\
\hline
\hline
\end{array}
\]

\(\begin{array}{c}
4 & 21 \\
\hline
9 & 8 \\
\hline
1 & 1 \\
\end{array}\)

quotient = 2
remainder = 1

Check Your Work
\[
\frac{9}{4} = 2 \quad \text{remainder} \quad 1
\]

6. \(92 \div 4\)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
9 & 2 \\
\hline
\hline
\end{array}
\]

\(\begin{array}{c}
4 & 23 \\
\hline
9 & 2 \\
\hline
1 & 0 \\
\hline
\end{array}\)

quotient = 23
remainder = 0

Check Your Work
\[
\frac{92}{4} = 23 \quad \text{remainder} \quad 0
\]
Show the division using disks. Relate your model to long division. Check your quotient by using multiplication and addition.

1. $5 ÷ 4$

 Check Your Work

 \[
 \begin{array}{c}
 \\
 \hline
 4 | 16 \\
 \hline
 16 \\
 \hline
 16 \\
 \hline
 \end{array}
 \]

 $\begin{array}{c}
 \text{quotient} = 1 \\
 \text{remainder} = 1
 \end{array}$

2. $56 ÷ 4$

 Check Your Work

 \[
 \begin{array}{c}
 \\
 \hline
 4 | 56 \\
 \hline
 16 \\
 \hline
 56 \\
 \hline
 \end{array}
 \]

 $\begin{array}{c}
 \text{quotient} = 14 \\
 \text{remainder} = 0
 \end{array}$
4. $62 \div 4$

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000</td>
</tr>
</tbody>
</table>

$\frac{4}{62}$

quotient $= \frac{15}{2}$

remainder $= 2$

Check Your Work

$15 \div 4 = 3.75$

$3 \times 4 = 12$

$12 + 2 = 14$

5. $8 \div 3$

<table>
<thead>
<tr>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
</tr>
<tr>
<td>0000</td>
</tr>
<tr>
<td>00</td>
</tr>
</tbody>
</table>

$\frac{3}{8}$

quotient $= \frac{2}{2}$

remainder $= 2$

Check Your Work

$3 \times 2 = 6$

$6 + 2 = 8$

6. $84 \div 3$

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>00000</td>
</tr>
<tr>
<td>0000</td>
<td>00000</td>
</tr>
<tr>
<td>00</td>
<td>00000</td>
</tr>
<tr>
<td>00</td>
<td>00000</td>
</tr>
</tbody>
</table>

$\frac{3}{84}$

quotient $= \frac{28}{0}$

remainder $= 0$

Check Your Work

$28 \div 3 = 9.333$

$9 \times 3 = 27$

$27 + 1 = 28$
Show the division using disks. Relate your model to long division. Check your quotient and remainder by using multiplication and addition.

1. \(7 \div 2 \)

\[
\begin{array}{c|c}
\text{Ones} & \text{Tens} \\
\hline
0 & 0
\end{array}
\]

quotient = \[3\]
remainder = \[1\]

Check Your Work
\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
0 & 0
\end{array}
\]

\[3 \times 2 + 1 = 7\]

2. \(73 \div 2 \)

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
0 & 0
\end{array}
\]

quotient = \[36\]
remainder = \[1\]

Check Your Work
\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
0 & 0
\end{array}
\]

\[36 \times 2 + 1 = 73\]

3. \(6 \div 4 \)

\[
\begin{array}{c|c}
\text{Ones} & \text{Tens} \\
\hline
0 & 0
\end{array}
\]

quotient = \[1\]
remainder = \[2\]

Check Your Work
\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
0 & 0
\end{array}
\]

\[4 \times 1 + 2 = 6\]